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Abstract

The Poisson reduction theorem of Marsden—Ratiu is refined so as to include the reduction of either
a Poisson-Nijenhuis structure (Magri and Morosi, 1984) or a complementary 2-form (Vaisman,
1995).
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1. Introduction

Our general framework is the C°°-category, and the basic objects studied in this note are
Poisson manifolds and their associated Nijenhuis structures and complementary 2-forms.

A Poisson manifold is a differentiable manifold M™ endowed with a Poisson bivector,
the latter being a bivector field P on M which satisfies [P, P] = 0. The bracket is the
so-called Schouten—Nijenhuis bracket, and the existence of P is equivalent to the existence
of the Poisson bracket {f,g} (f,g € C*(M)) which makes C*°(M) into a Lie algebra,
and which is a derivation of C°°(M) if either f or g is fixed. We assume that the reader is
familiar with the theory of Poisson manifolds (e.g., [7]).

A Nijenhuis tensor A is a (1, 1)-tensor field of M which has a vanishing Nijenhuis torsion:

Na(X,Y):=[AX,AY] — A[AX,Y] — A[X,AY] + A%[X,Y] =0 .1

(X, Y are vector fields on M). If P is a Poisson bivector and A is a Nijenhuis tensor, the
pair (P, A) is called a Poisson—Nijenhuis structure, and (M, P, A) is a Poisson—-Nijenhuis
manifold, provided that the following two conditions hold:

PxoA,B)= P(x,B0A) (1.2)
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for any two 1-forms «, 8 of M, and

Cp,a)(@, X, B) := B((Lypa A)X) — a((LyppA)X)
+(AX)(P(a, B)) — X(P(@o A,B)) =0 (1.3)

VX, a,B as in (1.1) and (1.2). C(p, 4) is called the Schouten invariant, L denotes Lie
derivatives, and fpo is defined by S(1pa) = P(a, 8). The importance of the Poisson—
Nijenhuis structures comes from their role in the study of the integrability of Hamiltonian
dynamical systems (see [2,5], etc.).

Furthermore, if (M, P) is a Poisson manifold, the bracket {d f,dg} := d{f, g} extends
to a Lie bracket of 1-forms which has the general expression (e.g., [3,7]):

{a, Blp = d(P(a, B)) — i(Bpa)dB — i(pB) da. (1.4)

Moreover, by the same algebraic machinery as for the usual Schouten—Nijenhuis bracket,
the bracket (1.4) extends to arbitrary differential forms [4,3,7]. A 2-form w on M is a
complementary 2-form of P, and (M, P, w) is a complemented Poisson manifold [9] if w
satisfies

{w,w}p = 0. (1.5)

We have proven in [9] that if w is a closed complementary 2-form of P, and if we de-
fine as usual b, (X) := i(X)w, then (P, A := fip o b,) is a Poisson—Nijenhuis structure
on M.

Now, we assume that the reader is familiar with the symplectic reduction procedure of
Marsden and Weinstein (e.g., [1]). This procedure was extended by Marsden and Ratiu
[6,10,7] to Poisson manifolds. Even prior to this, particular cases of reduction were used to
reduce Poisson-Nijenhuis structures to the “kernel-free” situations needed in integrability
theory [5].

The aim of the present note is to use the Marsden—Ratiu reduction theorem in order to
deduce general reduction theorems for Poisson—Nijenhuis manifolds and for complemented
Poisson manifolds. In particular, we get reductions via Hamiltonian group actions and
momentum maps. For instance, if the connected Lie group G has a Hamiltonian action on
the Poisson manifold (M, P), with equivariant momentum map J : M — G* (G is the Lie
algebra of G and G* is its dual), any solution of the Yang—Baxter equation of G lifts to a
closed complementary 2-form w of (M, P) which has reductions to the level sets of the
regular values of J. Of course, the same holds for the Poisson—Nijenhuis structure defined
by P and w on M.

2. Reduction of the Poisson-Nijenhuis structures

Let (M, P) be a Poisson manifold, (y : N € M a submanifold of M, and F a vector
subbundle of T M|y such that: (i) ENTN = TF, where F is the foliation of N by the
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fibers of a submersion 7 : N — Q; (ii) Vg, ¥ € C°°(M) such thatdg|g = dy|g = O one
has d{g, ¥ }|g = 0; (iii) there exists a Poisson structure P’ on Q such that

(o ¥low=1(f,g) om 2.1

Vf.,g € C®(Q), and where ¢, ¥ are extensions of f o 7,8 o 7 to M such that dpjg =
d¥|g = 0. Then the Poisson manifold (Q, P’) is said to be obtained by the reduction of
(M, P)via(N,E).

The reduction theorem of Marsden—Ratiu [6] says that if conditions (i) and (ii) are
satisfied, the reduced structure P’ exists (i.e., (iii) holds) iff

fpAnn EC TN+ E, (2.2)

where Ann E is the annihilator of E (i.e., the subbundle of 7* M|y which vanishes on E).
Now, using this result, we prove:

Theorem 2.1. Let (M, P, A) be a Poisson—Nijenhuis manifold, N a submanifold, and E a
vector subbundle of T M|y such that conditions (i) and (ii) described above hold. Moreover,
assume that A(TN) € TN, A(E) C E, and that A|y sends F-foliated vector fields to
F-foliated vector fields. Then, A projects by i to a (1, 1)-tensor field A’ of Q and, if

tpAnn E CTN 2.3)

also holds, (Q, P', A"), with P’ of (2.1), is again a Poisson-Nijenhuis manifold, and it is
said to have been obtained from (M, P, A) by reduction via (N, E).

Proof. On a foliated manifold, a foliated vector field is a vector field which preserves the
foliation. Then, the hypotheses on A clearly imply the existence of A" and the fact that A’
is a Nijenhuis tensor on Q.

Now, (2.3) implies (2.2), and P’ also exists. In view of (2.1), the bivector P’ of Q is
determined by

Py (L, 1) = Po(*A, 7% p0), 2.4)

wherege Q,ne N, n(n) =¢q, A, € T*Q, and ﬂ,nﬂ;ﬁ are extensions of w*A, 7*u
from TN to T M|y such that ﬂlE = nF;ILIE = 0. Indeed, (2.1) and (2.4) are the same
if A =df, pn = dg, f,g € C*®(Q). Then, if we use the extensions n*(fg A) =
T*A6 A, T*(io A’y = T o A, we see that (1.2) implies P/(% o A’, u) = P'(A, o A').
Therefore, we only have to check that the Schouten invariant C p, 4y defined by (1.3)
vanishes. But, as shown in [8], we may see that condition C(p/, 4y = 0 is equivalent to

dgo Ly A’ =i(Xp)d(df o A') (2.5)

Vf,g € C*(Q), and for their P’-Hamiltonian vector fields X }, X ;. Moreover, it is enough
to check that the lift of (2.5) by 7 * holds.
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Let ¢,y be extensions of f o w,g o m to M such that dp|g = dyr|g = 0. Since
C¢p, oy = 0, we have the corresponding equality (2.5), i.e.,

dy o Lx,A = i(Xy)d(dg o A). (2.6)

We also have X,(n) = tipd,¢ € tpAnn E C TN (n € N) (because of (2.3)) and, as a
consequence of this fact, (2.1) implies

Xy (m(n)) = mXy(n) (neN). (2.7)

Now, let us take Z, € T, N, and let Z be an F-foliated vector field of N such that
Z(n) = Z,. It follows that

7 (dg o Ly ANZn) = demg (X}, A'mZ] = A[X}.m.Z)

2.7
D 48 (Tl Xylv, AZ] ~ T, A[X N, Z])

= (dy o Lx,A)(Zy)
Q@.

=)

"d(dg o A)(Xy (1), Z0)
T ddf o AN (Xy (1), Zy)
d(df o A)X,(r(n)), 70 Zs)
[i (X, (7 () d(d f © AV Zs)
= n*[i(X; ddfo A')](Z,,).

(In this computation one should always keep in mind that the vector fields X, X are
tangent to N, a fact that was ensured by hypothesis (2.3).) a

Remark 2.2. In Theorem 2.1, the condition that A |y sends foliated vector fields to foliated
vector fields may be replaced by the equivalent condition

[Lv(AINMIY)eTF, YV eTF, VY €TN. (2.8)

Indeed, since it is enough to look at (2.8) for Y, € T, N (np € N), we may assume that
the vector field Y which extends Y, to N is an F-foliated field. Then

[Lv(AIMIY) =[V,AY] - A[V,Y]

and [V,Y] € TF.Hence, Ly(A|ny)(Y) and [V, AY] either belong or do not belong to T F,
simultaneously.
For instance, (2.8) holds if we ask that

(LxA)TN) CE (2.9)

for any vector field X of M such that X|y € E.

An interesting case of Poisson reduction is obtainedif E = 1p Ann T N, and the following
hypotheses hold: (1) rank P|y = const., and N is transversal to the symplectic leaves of
P;2Q)dim((§pAnn TNYNT N) = const. Notice that (2.3) is true in this case. Now, if we
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also have the Nijenhuis tensor A such that (P, A) is a Poisson—-Nijenhuis structure, and if
we add two more conditions: (3) A(TN) C T N; (4) the relation (2.9) is satisfied, we get a
case of Poisson-Nijenhuis reduction. Indeed, (1.2) implies that A pa = fp(ax o A) for any
1-form «, and then we see that condition (3) also implies A(E) C E. Thus, we may apply
Theorem 2.1, and we get the desired result.

Finally, we note that all the cases of the Poisson-Nijenhuis reductions used in [5] are
particular cases of Theorem 2.1.

3. Reduction of complementary 2-forms

Let us consider again a Poisson manifold (M, P), a submanifold N of M, and a vec-
tor subbundle E C T M|y such that conditions (i)—(iii) of the beginning of Section 2 are
satisfied, and the reduced Poisson manifold (Q, P’) of (M, P) via (N, E) exists. Further-
more, let w be a complementary 2-form of P on M. Then, the following theorem provides
conditions for the reducibility of w to a complementary 2-form o’ of (Q, P’).

Theorem 3.1. Let (M, P,N,E,w, Q, P') be as above, and let F be the foliation ENTN
of N. Assume that: (i) ipAnnE C TN; ipAnnTN C E;b,(TN) C AnnE; (ii) L*Na) isan
F-foliated (i.e., projectable) 2-formof N (1}, : N € M, andb,, : TM — T*M is given by
boX := i(X)w, X € TM). Then, the projected 2-form ' of w onto Q is a complementary
2-form of (Q, P').

Proof. We begin by proving an auxiliary result, namely, for the reduced Poisson manifold
(Q, P’), one has

GATA T e = A, pdpr, 3.1)

where the notation is that of formula (2.4), and the brackets of 1-forms are those defined by
(1.4). Indeed, it is easy to understand that (2.4) implies

AP (T* A, T w))) = *(d(P (A, ). (3.2)
Hence, in view of (1.4), (3.1) will be proven if we prove
A (e D) dp) = O (E(EpT*A) d(T* 1)) (33)

(The final terms of the brackets (3.1) are of the same form, but with the exchanged roles of
A and p.) Since ip(T*A) € TN, because of the first part of hypothesis (i), the definition of
the differential 7, of 7 yields

T (BpT*A) = fiprh. (3.4)
Then, for any F-foliated vector field Y of N, we get

T Ep ) d)(Y) = dp(prh, e ¥) = dp(matp (T¥1), 14 Y)
= (* du)(#pm*A, ¥) = d(T* ) (1p7*A, Y), (3.5)
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where the last equality holds since (in view of the first part of hypothesis (i) only values of
nA*ﬁ on tangent vectors of N appear in the evaluation of the last term of (3.5). Now, it is
clear that (3.5) implies (3.3), because the latter is to be checked only for Y, € T,N (n € N),
and all such Y, may be extended to an F-foliated field Y of N.

Now, by a general algebraic Schouten—Nijenhuis bracket formula [2,3], one has

(@0 p X, Yms Zm) = ) (ull xY,2), (3.6)
Cycl(X,Y,2Z)

where Xp,, Y, Z, € TuyM (m € M), X,Y,Z are vector fields of M which extend
Xms Ym, Zm, and L* is the Lie derivative operation of the Lie algebroid T*M of bracket
(1.4), and with the anchor map §p. From (3.6) we get

(@0} p X, Y, Zm)=— Y (L} xY,i(Z)w)
Cycl(X,Y,2)
= Y (#ruXm)@(Y,2)) + (Ym, (byX,b0Z} p).
Cycl(X,Y,2)
(3.7)

Letustakem € N, Xp,, Y, Zm € Ty N, and X, Y, Z extension vector fields which are
tangent to N, and are foliated with respect to 7 on N. Then, the left-hand side of (3.7) is
an evaluation of ¢}, ({w, w} p).

On the other hand, because of the last part of hypothesis (i) and of hypothesis (ii), we
have

3.1
(Ym, P X, Z}p) = (Ym, Ny b X, D0 Z) p) &) (Yo, T by X, by T Z)).

Furthermore, let us denote f{p ob,, = A, ff pr ob,y = A’. Then, the first and last conditions
of (i) yield AX € T N, and this shows that the first term on the right-hand side of (3.7) is
also an evaluation on N.

Moreover, let n*b;;r*x be an extension of 7 *b, 7, X which vanishes on E. Thenb, X —
n*b:n*X € Ann TN and, if we apply fi p and use the first and the second conditions of
i), we get

AX —fpr*b m X € ENTN.

Then (3.4) allows us to conclude that 7,AX = A’w, X, and formula (3.7) turns out to be
exactly

HMMo,wlp = 1* (0,0} p. (3.8)

Therefore, {w, w}p = 0 implies {o’, @'} pr = 0. m]

The most interesting case is that of a closed complementary 2-form w since then (P, A =
1p oby) is a Poisson—Nijenhuis structure [9]. In this case, if reduction exists, (Q, P’, A")
is again a Poisson—Nijenhuis manifold. Following is a particular reduction theorem which
refers to this case.
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Theorem 3.2. Let (M, P) be a Poisson manifold, and N a submanifold of M such that
E := ipAnn TN has a constant dimension along N, and it satisfies conditions (i)—(iii)
of the beginning of Section 2, which ensure the existence of a reduction (Q, P’) of (M, P)
via (N, E). Let o be a closed complementary 2-form of (M, P) such that E and TN are
w-orthogonal. Then, w is an F-foliated 2-form, and it projects to a 2-form &’ of Q which
is a closed complementary 2-form of (Q, P’).

Proof. First, we notice that the existence of the foliation F, i.e., the fact that E N TN is
integrable along N is ensured if we ask dim(E N TN) = const. (E = fipAnn T N). (See,
for instance, {7, Proposition 7.17].) Then, for our particular E, the first two conditions of (i)
of Theorem 3.1 are satisfied, and the third condition of (i) of Theorem 3.1 is ensured by the
w-orthogonality of E and 7T N. Hence, by Theorem 3.1, Theorem 3.2 will be proven if we
show that w is F-foliated. Since VX € TF and VY € TN we have w(X,Y) = 0, because
of the w-orthogonality of E and TN, w is F-foliated iff X (w(Y,Z)) = 0VX € TF and
for all F-foliated vector fields Y, Z of N. But this latter fact immediately follows from
do(X,Y,Z2)=0. a

Remark 3.3.

(1) In Theorem 3.2, A := {ip o b, provides (M, P) with a Poisson-Nijenhuis structure
[9]. This structure is reducible in the sense of Theorem 2.1, and the reduced Poisson—
Nijenhuis manifold .s (Q, P’, A’ := p/ o b,).

(2) In Theorem 3.2, the foliation F is given by TF = pAnn(E + TN).

(3) For symplectic manifolds, a closed complementary 2-form is equivalent to a PS2-
structure in the sense of [5] (see [9]). The cases of P $2-reduction discussed in [5] are
contained in Theorems 3.1 and 3.2.

4. Reduction under group actions

Let (M, P) be a Poisson manifold endowed with a Hamiltonian action of a connected Lie
group G and an equivariant momentum map J : M — G*, where G is the Lie algebra of G
and G* is the dual space of G. Let y € G* be acommon regular value of the restrictions of J
to the symplectic leaves of P such that M, := J~!(y) # @, and it has a clean intersection
with the symplectic leaves of P and with the orbits of G in M. Then, it is known (e.g., [7])
that E = T(Orbits G) is a vector subbundle of 7 M|y, (the orbits of the points of M,
have all the same dimension equal to the dimension of G), which intersects T M, following
the tangent bundle of the foliation 7 of M, by the connected components of the orbits of
G, = the isotropy subgroup of y € G* for the coadjoint representation of G. Moreover, if
M, /F is the Hausdorff manifold @, Q has a Poisson structure P’ defined by the reduction
of (M, P) via (M, , E).

The reduction procedure described above can be extended to a certain type of Poisson—~
Nijenhuis structures, and this is shown by the following theorem.
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Theorem 4.1. Let (M, P,G,J,v, Q, P) be as described above, and assume that A is a
Nijenhuis structure of M which makes (M, P, A) into a Poisson—Nijenhuis manifold, and
which is such that: (i) at the points of M,, one has J, o A = J,; (ii) V€ € G, AZE = C"E
where tilde denotes the infinitesimal action of G on M, and C an endomorphism of G, (iii)
A is G-invariant (i.e., Y& € G, LEA = 0). Then, (P, A) reduces to a Poisson—Nijenhuis
structure (P', A} of the reduced Poisson manifold (Q, P").

Proof. We obtain this result by using Theorem 2.1. The conditions J, c A = J, and
A.g = Eé yield A(TM,) € TM, and A(E) C E (E = T(Orbits G)), respectively. It is
also known that (2.3) holds in our case [7, p. 112]. Thus, we still have to check that A sends
foliated vector fields to foliated vector fields. Since £ = span{§ Im, |& € G}, hypotheses
(ii) and (iii) easily lead to the fact that (2.9) holds, and the conclusion follows. 0

[t is also possible to use reduction under a group action in order to reduce complementary
2-forms, and we have:-

Theorem 4.2. Let (M, P,G,J,y, Q, P be as in Theorem 4.1, and let w be a comple-
mentary 2-form of P on M. Assume that w is G-invariant, and that the orbits of G are
w-orthogonal to the level sets of the momentum map J. Then, w is projectable to a 2-form
' of Q, which is a complementary 2-form of the reduced Poisson structure P'.

Proof. Now, we use Theorem 3.1 for N = M, and E = T(Orbits G) = tpAnn TM,,
{7, formula (7.27)]. Then, since, also, the level set M,, of J is w-orthogonal to the orbits of
G, all the conditions of (i) of Theorem 3.1 are satisfied. Furthermore, the w-orthogonality
hypothesis yields i(X)a)ITMy = 0VX e TF. Then, since the leaves of F are the orbits of
the subgroup Gy of G, and V& € G, Lzw = 0, it becomes clear that iy w is F-foliated.
Hence, condition (ii) of Theorem 3.1 is also satisfied. a

Furthermore, if we base our argument on Theorem 3.2, instead of Theorem 3.1, we
obviously obtain:

Theorem 4.3. Let (M, P,G,J,y, Q, P") be as in Theorem 4.2, and let w be a closed
complementary 2-form of (M, P) such that the level sets of J and the orbits of G are w-
orthogonal. Then, w projects to a 2-form o' of Q which is a closed complementary 2-form
of the reduced Poisson structure P’.

The situation of Theorem 4.3 is interesting since closed complementary 2-forms yield
Poisson-Nijenhuis structures. A good example of this situation is obtained as follows. Let
re A2G be a solution of the Yang—Baxter equation [r, r] = O (see, for instance, [7]). Then,
as shown in [9] r can be interpreted as a closed 2-form on the dual space G* which is comple-
mentary to the Lie—Poisson structure I7 of G*. Also, since J : (M, P) — (G*, IT) is a Pois-
son map (because J is equivariant), w := J*ris a closed complementary 2-form of (M, P).
Finally, since i (ker J,)w = 0, the w-orthogonality hypothesis of Theorem 4.3 is satisfied.
Therefore, w is reducible to @, and so is the Poisson—Nijenhuis structure (P, A = ip o).
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