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Abstract 

The Poisson reduction theorem of Marsden-Ra~iu is refined so as to include the reduction of either 
a Poisson-Nijenhuis structure (Magri and Morosi, 1984) or a complementary 2-form (Vaisman, 
1995). 
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1. Introduction 

Our general framework is the C°°-category, and the basic objects studied in this note are 

Poisson manifolds and their associated Nijenhuis structures and complementary 2-forms. 

A Poisson manifold is a differentiable manifold M m endowed with a Poisson bivector, 

the latter being a bivector field P on M which satisfies [P,  P]  ---- 0. The bracket is the 

so-called Schouten-Nijenhuis bracket, and the existence of  P is equivalent to the existence 

of  the Poisson bracket { f  , g} ( f  , g E C ~ ( M ) )  which makes C°°(M) into a Lie algebra, 

and which is a derivation of  C°°(M) if  either f or g is fixed. We assume that the reader is 

familiar with the theory of  Poisson manifolds (e.g., [7]). 

A Nijenhuis tensor A is a (1, 1)-tensor field of  M which has a vanishing Nijenhuis torsion: 

.Ma (X, Y) : =  [AX, AY] - A[AX,  Y] - AIX,  AY] + AZ[x,  Y] = 0 (1.1) 

(X, Y are vector fields on M). If  P is a Poisson bivector and A is a Nijenhuis tensor, the 

pair (P ,  A) is called a Poisson-Nijenhuis structure, and (M, P, A) is a Poisson-Nijenhuis 
manifold, provided that the following two conditions hold: 

P(ot o A, ,B) = P(ot, ,8 o A) (1.2) 
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for any two 1-forms c~, ¢1 of  M, and 
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C(p, A) (Ol, X,/~) :=  t~((L~pc~A)X) - ol((L~p~A)X) 

+(AX)(P(o~,  fl)) - X(P(ol  o A, fl)) = 0 (1.3) 

YX, a , f l  as in (1.1) and (1.2). C(p,A ) is called the Schouten invariant, L denotes Lie 

derivatives, and ~pc~ is defined by fl(~pa) = P(ot,/3). The importance of  the Poisson- 

Nijenhuis structures comes from their role in the study of  the integrability of  Hamiltonian 

dynamical systems (see [2,5], etc.). 

Furthermore, if (M, P)  is a Poisson manifold, the bracket {d f ,  dg} :=  d{f ,  g} extends 
to a Lie bracket of 1-forms which has the general expression (e.g., [3,7]): 

{Or, ~}p = d(P(c~, fl)) - i(~pot) dfl - i (~p~) dot. (1.4) 

Moreover, by the same algebraic machinery as for the usual Schouten-Nijenhuis bracket, 

the bracket (1.4) extends to arbitrary differential forms [4,3,7]. A 2-form co on M is a 

complementary 2-form of P, and (M, P, co) is a complemented Poisson manifold [9] if co 

satisfies 

{co, co}e = 0. (1.5) 

We have proven in [9] that if co is a closed complementary 2-form of P, and if we de- 

fine as usual bo,(X) :=  i(X)co, then (P,  A :=  I~p o bo)) is a Poisson-Nijenhuis structure 

on M. 

Now, we assume that the reader is familiar with the symplectic reduction procedure of 

Marsden and Weinstein (e.g., [1]). This procedure was extended by Marsden and Raliu 

[6,10,7] to Poisson manifolds. Even prior to this, particular cases of reduction were used to 

reduce Poisson-Nijenhuis structures to the "kernel-free" situations needed in integrability 

theory [5]. 

The aim of  the present note is to use the Marsden-Raliu reduction theorem in order to 

deduce general reduction theorems for Poisson-Nijenhuis manifolds and for complemented 

Poisson manifolds. In particular, we get reductions via Hamiltonian group actions and 

momentum maps. For instance, if the connected Lie group G has a Hamiltonian action on 

the Poisson manifold (M, P) ,  with equivariant momentum map J : M ---> G* (G is the Lie 

algebra of  G and G* is its dual), any solution of  the Yang-Baxter equation of ~ lifts to a 

closed complementary 2-form co of  (M, P)  which has reductions to the level sets of the 

regular values of  J.  Of course, the same holds for the Poisson-Nijenhuis structure defined 

by P and co on M. 

2. Reduction of the Poisson-Nijenhuis structures 

Let (M, P)  be a Poisson manifold, tN " N C M a submanifold of  M, and E a vector 

subbundle of  TMIN such that: (i) E N T N  = TY',  where Y" is the foliation of  N by the 
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fibers of  a submersion zr : N --+ Q; (ii) ¥~0, ~p ~ C a ( M )  such that dtple = dgrle = 0 one 

has d{~o, ~k}IE = 0; (iii) there exists a Poisson structure P '  on Q such that 

{~0, l/r} 0 t N = { f  ,g}' o ~r (2.1) 

Y f ,  g ~ Coo(Q), and where ~0,~p are extensions of  f o rr ,g o zr to M such that d~01e = 

dlPlE = 0. Then the Poisson manifold (Q, P ' )  is said to be obtained by the reduction of 
(M, P)  via (N, E). 

The reduction theorem of Marsden-Ratiu [6] says that if conditions (i) and (ii) are 

satisfied, the reduced structure P '  exists (i.e., (iii) holds) iff 

gpAnn E c_ T N  + E, (2.2) 

where Ann E is the annihilator of E (i.e., the subbundle of  T'MIra which vanishes on E). 
Now, using this result, we prove: 

Theorem 2.1. Let (M, P, A) be a Poisson-Nijenhuis manifold, N a submanifold, and E a 
vector subbundle of TMIN such that conditions (i) and (ii) described above hold. Moreover, 

assume that A(T  N) c_ T N, A(E)  c_ E, and that AIN sends .T-foliated vector fields to 
U-foliated vector fields. Then, A projects by rc to a (1, 1)-tensor field A ' of  Q and, if 

I~pAnn E c T N  (2.3) 

also holds, (Q, P', A'), with P' of(2.1), is again a Poisson-Nijenhuis manifold, and it is 
said to have been obtained from (M, P, A) by reduction via ( N, E). 

Proof On a foliated manifold, a foliated vector field is a vector field which preserves the 

foliation. Then, the hypotheses on A clearly imply the existence of  A'  and the fact that A'  
is a Nijenhuis tensor on Q. 

Now, (2.3) implies (2.2), and P '  also exists. In view of  (2.1), the bivector P' of Q is 
determined by 

PqO.,U) = P,,(rr*~.,a'*U), (2.4) 

where q ~ Q, n ~ N, zr(n) = q, ~.,/z E T ' Q ,  and zr*)v, zr*/z are extensions of  z r 'Z ,  zr*# 
from T N  to TMIN such that zr*~.lE = zr*/zlE = 0. Indeed, (2.1) and (2.4) are the same 

if ~. = d f ,  /z = dg, f , g  ~ C°°(Q). Then, if we use the extensions zr*O.o A') = 
zr*Z 6 A, rr*(# o A')  = zr*/z o A, we see that (1.2) implies P'(~. o A ' ,# )  = P'(k, lz o A'). 

Therefore, we only have to check that the Schouten invariant C(p,, a') defined by (1.3) 

vanishes. But, as shown in [8], we may see that condition C(p,, A') = 0 is equivalent to 

dg o Lx,IA' = i (Xg)d(d  f o A') (2.5) 

V f ,  g c Coo(Q), and for their P'-Hamiltonian vector fields X~, X~. Moreover, it is enough 
to check that the lift of  (2.5) by Jr* holds. 
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Let ¢p,~ be extensions of  f o Jr,g o Jr to M such that d~01E = d~PlE = 0. Since 

C(p, A) = 0, we have the corresponding equality (2.5), i.e., 

d ~  o L x ¢ A  = i (X¢)  d(dtp o A). (2.6) 

We also have X~o(n) = ~p dn~o e ~pAnn E c_ T N  (n ~ N) (because of  (2.3)) and, as a 

consequence of  this fact, (2.1) implies 

X).(zr(n)) = rr, X¢(n) (n e N).  (2.7) 

Now, let us take Zn ~ T~N, and let Z be an 5C-foliated vector field of N such that 

Z(n)  = Zn. It follows that 

rt*(dg o Lx}A ' ) (Zn )  = d~r(mg([X'f, A'zr, ZI - A'[Xtf,rr, Z]) 

(2_:=7_) dTr(n)g(Tr,[ X~olN, a z] - 7r, a[ x~olN , Z]) 

= (d~  o Lx~oA)(Zn) 

(2.__6) 
d(d~0 o a ) (X~(n ) ,  Z , )  

= r r*(d(df  o ar))(X~o(n), Zn) 

d ( d f  o ' ' = A )(Xg(rr(n)), ~r, Zn) 

= [i(XtgUr(n))) d ( d f  o a')](zr, Zn) 

= 7r*[i(X~g d ( d / o  a')](Zn).  

(In this computation one should always keep in mind that the vector fields X~0, X~ are 

tangent to N, a fact that was ensured by hypothesis (2.3).) E] 

R e m a r k  2.2. In Theorem 2.1, the condition that A IN sends foliated vector fields to foliated 
vector fields may be replaced by the equivalent condition 

[Lv(AIN)] (Y)  e T.T, ' ¢ V e  T.~, '¢Y ~ T N .  (2.8) 

Indeed, since it is enough to look at (2.8) for Yno c Tno N (no e N),  we may assume that 

the vector field Y which extends Yn0 to N is an )V-foliated field. Then 

[Lv(AIN) I (Y)  = [V, A Y ] -  A[V,  Y] 

and IV, Y] e T~' .  Hence, L v ( A l u ) ( Y )  and IV, AY] either belong or do not belong to T5 c, 

simultaneously. 

For instance, (2.8) holds if we ask that 

( L x A ) ( T N )  c_ E (2.9) 

for any vector field X of  M such that X IN e E. 
An interesting case of  Poisson reduction is obtained if E = ~ e Ann T N, and the following 

hypotheses hold: (1) rank P IN = const. ,  and N is transversal to the symplectic leaves of  
P;  (2) d im( (~eAnn  T N )  A T N )  = const.  Notice that (2.3) is true in this case. Now, if we 
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also have the Nijenhuis tensor A such that (P, A) is a Poisson-Nijenhuis structure, and if 
we add two more conditions: (3) A(TN)  c TN; (4) the relation (2.9) is satisfied, we get a 
case of Poisson-Nijenhuis reduction. Indeed, (1.2) implies that A~pot = ~t, (or o A) for any 
1-form or, and then we see that condition (3) also implies A(E) c_ E. Thus, we may apply 

Theorem 2.1, and we get the desired result. 
Finally, we note that all the cases of the Poisson-Nijenhuis reductions used in [5] are 

particular cases of Theorem 2.1. 

3. Reduction of complementary 2-forms 

Let us consider again a Poisson manifold (M, P), a submanifold N of M, and a vec- 

tor subbundle E c TMIN such that conditions (i)-(iii) of the beginning of Section 2 are 
satisfied, and the reduced Poisson manifold (Q, P~) of (M, P) via (N, E) exists. Further- 
more, let co be a complementary 2-form of P on M. Then, the following theorem provides 

conditions for the reducibility of 09 to a complementary 2-form o9' of (Q, P'). 

Theorem 3.1. Let (M, P, N, E, 09, Q, P') be as above, and let ~ be the foliation E f3 T N 
of N. Assume that: (i) t~P Ann E c_ TN; t~pAnn TN c E; b~o(TN) ___ Ann E; (ii) t'N09 is an 
.T-foliated (i.e., projectable) 2-form of N (t* N : N c_ M, and boj : T M ~ T* M is given by 
b~oX := i(X)09, X ~ T M). Then, the projected 2-form 09/ of 09 onto Q is a complementary 
2-form of(Q,  P'). 

Proof. We begin by proving an auxiliary result, namely, for the reduced Poisson manifold 

(Q, P') ,  one has 

t~v{zr*~., zr*/z}p = rr*{~.,/z}p,, (3.1) 

where the notation is that of formula (2.4), and the brackets of 1-forms are those defined by 
(1.4). Indeed, it is easy to understand that (2.4) implies 

t~(d(P(Tr*)~, 7r*#))) = ~r*(d(P'(~., #))).  (3.2) 

Hence, in view of (1.4), (3. l) will be proven if we prove 

zr*(i(ge,~.) d#) = t~(i(gpzr*)O d(zr*U)). (3.3) 

(The final terms of the brackets (3.1) are of the same form, but with the exchanged roles of 
~. and #.) Since ~e (Jr*),) ~ TN,  because of the first part of hypothesis (i), the definition of 
the differential rr. of Jr yields 

f f , (~p~*~ . )  ~--- ~e,~.. (3.4) 

Then, for any .T-foliated vector field Y of N, we get 

7r*(i(~p,~) d/x)(Y) = dlz(~p,L, rr .Y)  = dlz(rt .~e(zt*J~),zr.Y) 

= (zr* d/z)(~ezr*~. ,  Y) = d(/r*/z)(~pzr*~. ,  V), (3.5) 
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where the last equality holds since (in view of  the first part of  hypothesis (i) only values of  

rr*/z on tangent vectors of  N appear in the evaluation of  the last term of  (3.5). Now, it is 

clear that (3.5) implies (3.3), because the latter is to be checked only for Yn e Tn N (n E N), 
and all such Yn may be extended to an ~'-foliated field Y of N. 

Now, by a general algebraic Schouten-Nijenhuis bracket formula [2,3], one has 

{to, to}p(Xm, Ym, Zm) = E (~oL~*oxY, Z), (3.6) 
Cycl(X, Y, Z) 

where Xm, Ym, Z,,, • TraM (m • M), X, Y, Z are vector fields of  M which extend 

Xm, Ym, Zm, and L* is the Lie derivative operation of  the Lie algebroid T*M of bracket 

(1.4), and with the anchor map ~p. From (3.6) we get 

{ to ' t o lp (Xm 'Ym 'Zm)=-  E (L~,oxY'i(Z)to) 
Cycl(X, Y, Z) 

= E (~p~toXm)(to(Y , Z)) d- (rm, {~toX, OtoZlp). 
Cyel(X, Y, z) 

(3.7) 

Let us take m • N, Xm, Ym, Z,n • Tm N, and X, Y, Z extension vector fields which are 
tangent to N, and are foliated with respect to .T" on N. Then, the left-hand side of  (3.7) is 

an evaluation of  t~v ({to, to} p). 

On the other hand, because of  the last part of  hypothesis (i) and of hypothesis (ii), we 

have 

(Ym,{bwX, bwZ}P) (Ym, * (3.1) = tN{btoX, OtoZ}p ) ---- (ym,zt*{bw, zt.X, bw, zt.Z}). 

Furthermore, let us denote lip o bo, = A, lip, o b,o, -- A'. Then, the first and last conditions 

of  (i) yield A X  • TN ,  and this shows that the first term on the right-hand side of (3.7) is 

also an evaluation on N. 

Moreover, let rt* bo,,~r, X be an extension of  zt*~,o, zr, X which vanishes on E. Then thoX - 

7r*b,o, zr, X • Ann T N  and, if we apply ~p and use the first and the second conditions of 

(i), we get 

A X  - lipZr*b~o,zr, X • E N TN.  

Then (3.4) allows us to conclude that 7r, A X  = A'zr, X, and formula (3.7) turns out to be 

exactly 

t*{to, tolp  ~--- 7l'*{to', totlp,.  (3.8) 

Therefore, {to, to}p = 0 implies {to', t o t } p ,  = O. [] 

The most interesting case is that of  a closed complementary 2-form to since then (P,  A = 

~e o ~o,) is a Poisson-Nijenhuis structure [9]. In this case, if reduction exists, (Q, P ' ,  A') 
is again a Poisson-Nijenhuis manifold. Following is a particular reduction theorem which 

refers to this case. 
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Theorem 3.2. Let (M, P) be a Poisson manifold, and N a submanifold of  M such that 

E :----- ~eAnn T N  has a constant dimension along N, and it satisfies conditions (i)-(iii) 

of the beginning of  Section 2, which ensure the existence of a reduction (Q, P~) o f (M,  P) 

via (N, E). Let w be a closed complementary 2-form o f ( M ,  P) such that E and T N are 

co-orthogonaL Then, 09 is an .U-foliated 2-form, and it projects to a 2-form o9~ of  Q which 

is a closed complementary 2-form of  (Q, P'). 

Proof First, we notice that the existence of the foliation .T', i.e., the fact that E fq T N  is 

integrable along N is ensured if we ask dim( E fq T N) --- const. ( E = ~p Ann T N). (See, 

for instance, [7, Proposition 7.17].) Then, for our particular E, the first two conditions of (i) 

of Theorem 3.1 are satisfied, and the third condition of (i) of Theorem 3.1 is ensured by the 

o9-orthogonality of E and TN.  Hence, by Theorem 3.1, Theorem 3.2 will be proven if we 

show that co is .T-foliated. Since VX E T f  and YY ~ T N  we have og(X, Y) = 0, because 

of the og-orthogonality of E and TN,  co is .T-foliated iff X(Og(Y, Z)) = 0 VX ~ T.T and 

for all .T-foliated vector fields Y, Z of N. But this latter fact immediately follows from 

dog(X, Y, Z) = 0. [] 

Remark 3.3. 
(1) In Theorem 3.2, A := ~p o bo~ provides (M, P) with a Poisson-Nijenhuis structure 

[9]. This structure is reducible in the sense of Theorem 2. l, and the reduced Poisson- 

Nijenhuis manifold ,s (Q, P~, A' := ~p, o boo,). 

(2) In Theorem 3.2, the foliation f is given by T f  = ~pAnn(E + TN) .  

(3) For symplectic manifolds, a closed complementary 2-form is equivalent to a P ~ -  

structure in the sense of [5] (see [9]). The cases of PI2-reduction discussed in [5] are 

contained in Theorems 3.1 and 3.2. 

4. Reduction under group actions 

Let (M, P) be a Poisson manifold endowed with a Hamiltonian action of a connected Lie 

group G and an equivariant momentum map J : M ---> G*, where G is the Lie algebra of G 

and G* is the dual space of G. Let y ~ G* be a common regular value of the restrictions of J 
to the symplectic leaves of P such that M r := j - l  (y) # ~, and it has a clean intersection 
with the symplectic leaves of P and with the orbits of G in M. Then, it is known (e.g., [7]) 

that E ---- T(Orb i t s  G) is a vector subbundle of TMIM r (the orbits of the points of My 

have all the same dimension equal to the dimension of G), which intersects TM× following 
the tangent bundle of the foliation 5 r of M r by the connected components of the orbits of 

G× := the isotropy subgroup of 2/ c G* for the coadjoint representation of G. Moreover, if 
My/b r is the Hausdorff manifold Q, Q has a Poisson structure P '  defined by the reduction 

of (M, P) via (M r, E). 
The reduction procedure described above can be extended to a certain type of Poisson- 

Nijenhuis structures, and this is shown by the following theorem. 
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Theorem 4.1. Let (M, P, G, J, y,  Q, P~) be as described above, and assume that A is a 

Nijenhuis structure of  M which makes ( M , P, A) into a Poisson-Nijenhuis manifold, and 

which is such that: (i) at the points of  My one has J, o A = J.; (ii) ~'~ E F, A~ = C"~, 

where tilde denotes the infinitesimal action of G on M, and C an endomorphism ofF; (iii) 

A is G-invariant (i.e., V~ c G, L~A = 0). Then, (P, A) reduces to a Poisson-Nijenhuis 

structure ( P', A ') of  the reduced Poisson manifold ( Q, P'). 

Proof We obtain this result by using Theorem 2.1. The conditions J ,  o A = J .  and 

Ag = C"~ yield A(TM×) c_ TM× and A(E) c E (E = T(Orb i t s  G)), respectively. It is 

also known that (2.3) holds in our case [7, p. 112]. Thus, we still have to check that A sends 

foliated vector fields to foliated vector fields. Since E = span{g IMy Is e 6 F}, hypotheses 

(ii) and (iii) easily lead to the fact that (2.9) holds, and the conclusion follows. [] 

It is also possible to use reduction under a group action in order to reduce complementary 

2-forms, and we have:. 

Theorem 4.2. Let (M, P, G, J, )/, Q, P') be as in Theorem 4. I, and let co be a comple- 

menta D, 2-form of P on M. Assume that co is G-invariant, and that the orbits of G are 

co-orthogonal to the level sets of  the momentum map J. Then, co is projectable to a 2-fi)rm 

co' of" Q, which is a complementar)' 2-form of the reduced Poisson structure P'. 

Proof Now, we use Theorem 3.1 for N = My and E = T(Orb i t s  G) = ~eAnn TMy 

[7, formula (7.27)]. Then, since, also, the level set My of  J is co-orthogonal to the orbits of 

G, all the conditions of (i) of  Theorem 3.1 are satisfied. Furthermore, the co-orthogonality 

hypothesis yields i (X)co]TMy = 0 'v'X E T5 r. Then, since the leaves of  5 c are the orbits of 

the subgroup G× of  G, and 'v'~ ~ F, L~co = 0, it becomes clear that t~vco is .Y'-foliated. 

Hence, condition (ii) of  Theorem 3.1 is also satisfied. [] 

Furthermore, if we base our argument on Theorem 3.2, instead of Theorem 3.1, we 

obviously obtain: 

Theorem 4.3. Let (M, P,  G, J ,  V, Q, P') be as in Theorem 4.2, and let co be a closed 

complementary. 2-form of (M, P) such that the level sets" of J and the orbits of G are co- 

orthogonal. Then, co projects to a 2-form 09' of Q which is a closed complementary 2-form 

of  the reduced Poisson structure P'. 

The situation of  Theorem 4.3 is interesting since closed complementary 2-forms yield 

Poisson-Nijenhuis structures. A good example of this situation is obtained as follows. Let 
r e  A2F be a solution of the Yang-Baxter equation [r, r] = 0 (see, for instance, [7]). Then, 

as shown in [9] r can be interpreted as a closed 2-form on the dual space F* which is comple- 

mentary to the Lie-Poisson structure H ofF*.  Also, since J : (M, P)  --+ (F*, /7)  is a Pois- 

son map (because J is equivariant), co :=  J * r  is a closed complementary 2-form of (M, P). 
Finally, since i (ker J.)co = 0, the co-orthogonality hypothesis of Theorem 4.3 is satisfied. 

Therefore, co is reducible to Q, and so is the Poisson-Nijenhuis structure (P,  A = ~p o t~,,,). 
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