

Journal of Geometry and Physics 19 (1996) 90-98

Reduction of Poisson-Nijenhuis manifolds

Izu Vaisman¹

Department of Mathematics and Computer Science, University of Haifa, Israel

Received 18 October 1994

Abstract

The Poisson reduction theorem of Marsden-Rațiu is refined so as to include the reduction of either a Poisson-Nijenhuis structure (Magri and Morosi, 1984) or a complementary 2-form (Vaisman, 1995).

Keywords: Poisson-Nijenhuis structures; Complementary 2-forms; Reduction 1991 MSC: 58F05, 53C15

1. Introduction

Our general framework is the C^{∞} -category, and the basic objects studied in this note are *Poisson manifolds* and their associated *Nijenhuis structures* and *complementary 2-forms*.

A Poisson manifold is a differentiable manifold M^m endowed with a Poisson bivector, the latter being a bivector field P on M which satisfies [P, P] = 0. The bracket is the so-called Schouten-Nijenhuis bracket, and the existence of P is equivalent to the existence of the Poisson bracket $\{f, g\}$ $(f, g \in C^{\infty}(M))$ which makes $C^{\infty}(M)$ into a Lie algebra, and which is a derivation of $C^{\infty}(M)$ if either f or g is fixed. We assume that the reader is familiar with the theory of Poisson manifolds (e.g., [7]).

A Nijenhuis tensor A is a (1, 1)-tensor field of M which has a vanishing Nijenhuis torsion:

$$\mathcal{N}_A(X,Y) := [AX,AY] - A[AX,Y] - A[X,AY] + A^2[X,Y] = 0$$
(1.1)

(X, Y are vector fields on M). If P is a Poisson bivector and A is a Nijenhuis tensor, the pair (P, A) is called a *Poisson-Nijenhuis structure*, and (M, P, A) is a *Poisson-Nijenhuis manifold*, provided that the following two conditions hold:

$$P(\alpha \circ A, \beta) = P(\alpha, \beta \circ A) \tag{1.2}$$

¹ E-mail: i.vaisman@uvm.haifa.ac.il.

^{0393-0440/96/\$15.00 © 1996} Elsevier Science B.V. All rights reserved SSDI 0393-0440(95)00024-0

for any two 1-forms α , β of M, and

$$C_{(P,A)}(\alpha, X, \beta) := \beta((L_{\sharp_P \alpha} A)X) - \alpha((L_{\sharp_P \beta} A)X) + (AX)(P(\alpha, \beta)) - X(P(\alpha \circ A, \beta)) = 0$$
(1.3)

 $\forall X, \alpha, \beta$ as in (1.1) and (1.2). $C_{(P,A)}$ is called the *Schouten invariant*, *L* denotes Lie derivatives, and $\sharp_P \alpha$ is defined by $\beta(\sharp_P \alpha) = P(\alpha, \beta)$. The importance of the Poisson-Nijenhuis structures comes from their role in the study of the integrability of Hamiltonian dynamical systems (see [2,5], etc.).

Furthermore, if (M, P) is a Poisson manifold, the bracket $\{df, dg\} := d\{f, g\}$ extends to a Lie bracket of 1-forms which has the general expression (e.g., [3,7]):

$$\{\alpha,\beta\}_P = \mathsf{d}(P(\alpha,\beta)) - i(\sharp_P \alpha) \,\mathsf{d}\beta - i(\sharp_P \beta) \,\mathsf{d}\alpha. \tag{1.4}$$

Moreover, by the same algebraic machinery as for the usual Schouten–Nijenhuis bracket, the bracket (1.4) extends to arbitrary differential forms [4,3,7]. A 2-form ω on M is a *complementary 2-form* of P, and (M, P, ω) is a *complemented Poisson manifold* [9] if ω satisfies

$$\{\omega, \omega\}_P = 0. \tag{1.5}$$

We have proven in [9] that if ω is a closed complementary 2-form of P, and if we define as usual $b_{\omega}(X) := i(X)\omega$, then $(P, A := \sharp_P \circ b_{\omega})$ is a Poisson-Nijenhuis structure on M.

Now, we assume that the reader is familiar with the *symplectic reduction procedure* of Marsden and Weinstein (e.g., [1]). This procedure was extended by Marsden and Rajiu [6,10,7] to Poisson manifolds. Even prior to this, particular cases of reduction were used to reduce Poisson–Nijenhuis structures to the "kernel-free" situations needed in integrability theory [5].

The aim of the present note is to use the Marsden-Raţiu reduction theorem in order to deduce general reduction theorems for Poisson-Nijenhuis manifolds and for complemented Poisson manifolds. In particular, we get reductions via Hamiltonian group actions and momentum maps. For instance, if the connected Lie group G has a Hamiltonian action on the Poisson manifold (M, P), with equivariant momentum map $J : M \to \mathcal{G}^*$ (\mathcal{G} is the Lie algebra of G and \mathcal{G}^* is its dual), any solution of the Yang-Baxter equation of \mathcal{G} lifts to a closed complementary 2-form ω of (M, P) which has reductions to the level sets of the regular values of J. Of course, the same holds for the Poisson-Nijenhuis structure defined by P and ω on M.

2. Reduction of the Poisson–Nijenhuis structures

Let (M, P) be a Poisson manifold, $\iota_N : N \subseteq M$ a submanifold of M, and E a vector subbundle of $TM|_N$ such that: (i) $E \cap TN = T\mathcal{F}$, where \mathcal{F} is the foliation of N by the

fibers of a submersion $\pi : N \to Q$; (ii) $\forall \varphi, \psi \in C^{\infty}(M)$ such that $d\varphi|_E = d\psi|_E = 0$ one has $d\{\varphi, \psi\}|_E = 0$; (iii) there exists a Poisson structure P' on Q such that

$$\{\varphi,\psi\}\circ\iota_N=\{f,g\}'\circ\pi\tag{2.1}$$

 $\forall f, g \in C^{\infty}(Q)$, and where φ, ψ are extensions of $f \circ \pi, g \circ \pi$ to M such that $d\varphi|_E = d\psi|_E = 0$. Then the Poisson manifold (Q, P') is said to be obtained by the *reduction of* (M, P) via (N, E).

The reduction theorem of Marsden-Rațiu [6] says that if conditions (i) and (ii) are satisfied, the reduced structure P' exists (i.e., (iii) holds) iff

$$\sharp_P Ann \ E \subseteq TN + E, \tag{2.2}$$

where Ann E is the annihilator of E (i.e., the subbundle of $T^*M|_N$ which vanishes on E). Now, using this result, we prove:

Theorem 2.1. Let (M, P, A) be a Poisson–Nijenhuis manifold, N a submanifold, and E a vector subbundle of $TM|_N$ such that conditions (i) and (ii) described above hold. Moreover, assume that $A(TN) \subseteq TN$, $A(E) \subseteq E$, and that $A|_N$ sends \mathcal{F} -foliated vector fields to \mathcal{F} -foliated vector fields. Then, A projects by π to a (1, 1)-tensor field A' of Q and, if

$$\sharp_P Ann \ E \subseteq T N \tag{2.3}$$

also holds, (Q, P', A'), with P' of (2.1), is again a Poisson-Nijenhuis manifold, and it is said to have been obtained from (M, P, A) by reduction via (N, E).

Proof. On a foliated manifold, a foliated vector field is a vector field which preserves the foliation. Then, the hypotheses on A clearly imply the existence of A' and the fact that A' is a Nijenhuis tensor on Q.

Now, (2.3) implies (2.2), and P' also exists. In view of (2.1), the bivector P' of Q is determined by

$$P'_{q}(\lambda,\mu) = P_{n}(\widetilde{\pi^{*}\lambda},\widetilde{\pi^{*}\mu}), \qquad (2.4)$$

where $q \in Q$, $n \in N$, $\pi(n) = q$, $\lambda, \mu \in T^*Q$, and $\widetilde{\pi^*\lambda}, \widetilde{\pi^*\mu}$ are extensions of $\pi^*\lambda, \pi^*\mu$ from TN to $TM|_N$ such that $\widehat{\pi^*\lambda}|_E = \pi^*\mu|_E = 0$. Indeed, (2.1) and (2.4) are the same if $\lambda = df$, $\mu = dg$, $f, g \in C^{\infty}(Q)$. Then, if we use the extensions $\pi^*(\lambda \circ A') = \pi^*\lambda \circ A$, $\pi^*(\mu \circ A') = \pi^*\mu \circ A$, we see that (1.2) implies $P'(\lambda \circ A', \mu) = P'(\lambda, \mu \circ A')$.

Therefore, we only have to check that the Schouten invariant $C_{(P', A')}$ defined by (1.3) vanishes. But, as shown in [8], we may see that condition $C_{(P', A')} = 0$ is equivalent to

$$dg \circ L_{X'_f} A' = i(X'_g) d(df \circ A')$$
(2.5)

 $\forall f, g \in C^{\infty}(Q)$, and for their P'-Hamiltonian vector fields X'_f, X'_g . Moreover, it is enough to check that the lift of (2.5) by π^* holds.

Let φ, ψ be extensions of $f \circ \pi, g \circ \pi$ to M such that $d\varphi|_E = d\psi|_E = 0$. Since $C_{(P,A)} = 0$, we have the corresponding equality (2.5), i.e.,

$$\mathbf{d}\psi \circ L_{X_{\psi}}A = i(X_{\psi})\,\mathbf{d}(\mathbf{d}\varphi \circ A). \tag{2.6}$$

We also have $X_{\varphi}(n) = \sharp_P d_n \varphi \in \sharp_P Ann E \subseteq TN$ $(n \in N)$ (because of (2.3)) and, as a consequence of this fact, (2.1) implies

$$X'_{f}(\pi(n)) = \pi_{*}X_{\varphi}(n) \quad (n \in N).$$
 (2.7)

Now, let us take $Z_n \in T_n N$, and let Z be an \mathcal{F} -foliated vector field of N such that $Z(n) = Z_n$. It follows that

$$\pi^{*}(dg \circ L_{X'_{f}}A')(Z_{n}) = d_{\pi(n)}g([X'_{f}, A'\pi_{*}Z] - A'[X'_{f}, \pi_{*}Z])$$

$$\stackrel{(2.7)}{=} d_{\pi(n)}g(\pi_{*}[X_{\varphi}|_{N}, AZ] - \pi_{*}A[X_{\varphi}|_{N}, Z])$$

$$= (d\psi \circ L_{X_{\varphi}}A)(Z_{n})$$

$$\stackrel{(2.6)}{=} d(d\varphi \circ A)(X_{\psi}(n), Z_{n})$$

$$= \pi^{*}(d(df \circ A'))(X_{\psi}(n), Z_{n})$$

$$= d(df \circ A')(X'_{g}(\pi(n)), \pi_{*}Z_{n})$$

$$= [i(X'_{g}(\pi(n))) d(df \circ A')](\pi_{*}Z_{n})$$

$$= \pi^{*}[i(X'_{g} d(df \circ A')](Z_{n}).$$

(In this computation one should always keep in mind that the vector fields X_{φ}, X_{ψ} are tangent to N, a fact that was ensured by hypothesis (2.3).)

Remark 2.2. In Theorem 2.1, the condition that $A|_N$ sends foliated vector fields to foliated vector fields may be replaced by the equivalent condition

$$[L_V(A|_N)](Y) \in T\mathcal{F}, \quad \forall V \in T\mathcal{F}, \ \forall Y \in TN.$$
(2.8)

Indeed, since it is enough to look at (2.8) for $Y_{n_0} \in T_{n_0}N$ ($n_0 \in N$), we may assume that the vector field Y which extends Y_{n_0} to N is an \mathcal{F} -foliated field. Then

 $[L_V(A|_N)](Y) = [V, AY] - A[V, Y]$

and $[V, Y] \in T\mathcal{F}$. Hence, $L_V(A|_N)(Y)$ and [V, AY] either belong or do not belong to $T\mathcal{F}$, simultaneously.

For instance, (2.8) holds if we ask that

$$(L_X A)(TN) \subseteq E \tag{2.9}$$

for any vector field X of M such that $X|_N \in E$.

An interesting case of Poisson reduction is obtained if $E = \sharp_P Ann TN$, and the following hypotheses hold: (1) rank $P|_N = const.$, and N is transversal to the symplectic leaves of P; (2) $dim((\sharp_P Ann TN) \cap TN) = const.$ Notice that (2.3) is true in this case. Now, if we

also have the Nijenhuis tensor A such that (P, A) is a Poisson-Nijenhuis structure, and if we add two more conditions: (3) $A(TN) \subseteq TN$; (4) the relation (2.9) is satisfied, we get a case of Poisson-Nijenhuis reduction. Indeed, (1.2) implies that $A \sharp_P \alpha = \sharp_P(\alpha \circ A)$ for any 1-form α , and then we see that condition (3) also implies $A(E) \subseteq E$. Thus, we may apply Theorem 2.1, and we get the desired result.

Finally, we note that all the cases of the Poisson-Nijenhuis reductions used in [5] are particular cases of Theorem 2.1.

3. Reduction of complementary 2-forms

Let us consider again a Poisson manifold (M, P), a submanifold N of M, and a vector subbundle $E \subseteq TM|_N$ such that conditions (i)-(iii) of the beginning of Section 2 are satisfied, and the reduced Poisson manifold (Q, P') of (M, P) via (N, E) exists. Furthermore, let ω be a complementary 2-form of P on M. Then, the following theorem provides conditions for the reducibility of ω to a complementary 2-form ω' of (Q, P').

Theorem 3.1. Let $(M, P, N, E, \omega, Q, P')$ be as above, and let \mathcal{F} be the foliation $E \cap TN$ of N. Assume that: (i) $\sharp_P Ann E \subseteq TN$; $\sharp_P Ann TN \subseteq E$; $\flat_{\omega}(TN) \subseteq Ann E$; (ii) $\iota_N^* \omega$ is an \mathcal{F} -foliated (i.e., projectable) 2-form of N ($\iota_N^* : N \subseteq M$, and $\flat_{\omega} : TM \to T^*M$ is given by $\flat_{\omega} X := i(X)\omega, X \in TM$). Then, the projected 2-form ω' of ω onto Q is a complementary 2-form of (Q, P').

Proof. We begin by proving an auxiliary result, namely, for the reduced Poisson manifold (Q, P'), one has

$$\iota_N^* \{ \widetilde{\pi^* \lambda}, \widetilde{\pi^* \mu} \}_P = \pi^* \{ \lambda, \mu \}_{P'}, \tag{3.1}$$

where the notation is that of formula (2.4), and the brackets of 1-forms are those defined by (1.4). Indeed, it is easy to understand that (2.4) implies

$$\iota_N^*(\mathrm{d}(P(\widetilde{\pi^*\lambda},\widetilde{\pi^*\mu}))) = \pi^*(\mathrm{d}(P'(\lambda,\mu))). \tag{3.2}$$

Hence, in view of (1.4), (3.1) will be proven if we prove

$$\pi^*(i(\sharp_{P'}\lambda)\,\mathrm{d}\mu) = \iota_N^*(i(\sharp_P\pi^*\lambda)\,\mathrm{d}(\pi^*\mu)). \tag{3.3}$$

(The final terms of the brackets (3.1) are of the same form, but with the exchanged roles of λ and μ .) Since $\sharp_P(\widetilde{n^*\lambda}) \in TN$, because of the first part of hypothesis (i), the definition of the differential π_* of π yields

$$\pi_*(\sharp_P \widetilde{\pi^* \lambda}) = \sharp_{P'} \lambda. \tag{3.4}$$

Then, for any \mathcal{F} -foliated vector field Y of N, we get

$$\pi^{*}(i(\sharp_{P'}\lambda) d\mu)(Y) = d\mu(\sharp_{P'}\lambda, \pi_{*}Y) = d\mu(\pi_{*}\sharp_{P}(\widetilde{\pi^{*}\lambda}), \pi_{*}Y)$$
$$= (\pi^{*} d\mu)(\sharp_{P}\widetilde{\pi^{*}\lambda}, Y) = d(\widetilde{\pi^{*}\mu})(\sharp_{P}\widetilde{\pi^{*}\lambda}, Y),$$
(3.5)

where the last equality holds since (in view of the first part of hypothesis (i) only values of $\pi^*\mu$ on tangent vectors of N appear in the evaluation of the last term of (3.5). Now, it is clear that (3.5) implies (3.3), because the latter is to be checked only for $Y_n \in T_n N$ ($n \in N$), and all such Y_n may be extended to an \mathcal{F} -foliated field Y of N.

Now, by a general algebraic Schouten-Nijenhuis bracket formula [2,3], one has

$$\{\omega,\omega\}_P(X_m,Y_m,Z_m) = \sum_{Cycl(X,Y,Z)} \langle \flat_{\omega} L^*_{\flat_{\omega} X} Y, Z \rangle,$$
(3.6)

where $X_m, Y_m, Z_m \in T_m M$ $(m \in M), X, Y, Z$ are vector fields of M which extend X_m, Y_m, Z_m , and L^* is the Lie derivative operation of the Lie algebroid T^*M of bracket (1.4), and with the anchor map \sharp_P . From (3.6) we get

$$\{\omega,\omega\}_{P}(X_{m},Y_{m},Z_{m}) = -\sum_{Cycl(X,Y,Z)} \langle L_{\flat_{\omega}X}^{*}Y,i(Z)\omega \rangle$$
$$= \sum_{Cycl(X,Y,Z)} (\sharp_{P}\flat_{\omega}X_{m})(\omega(Y,Z)) + \langle Y_{m},\{\flat_{\omega}X,\flat_{\omega}Z\}_{P} \rangle.$$
(3.7)

Let us take $m \in N$, $X_m, Y_m, Z_m \in T_m N$, and X, Y, Z extension vector fields which are tangent to N, and are foliated with respect to \mathcal{F} on N. Then, the left-hand side of (3.7) is an evaluation of $\iota_N^*(\{\omega, \omega\}_P)$.

On the other hand, because of the last part of hypothesis (i) and of hypothesis (ii), we have

$$\langle Y_m, \{ \flat_{\omega} X, \flat_{\omega} Z \}_P \rangle = \langle Y_m, \iota_N^* \{ \flat_{\omega} X, \flat_{\omega} Z \}_P \rangle \stackrel{(3.1)}{=} \langle Y_m, \pi^* \{ \flat_{\omega'} \pi_* X, \flat_{\omega'} \pi_* Z \} \rangle.$$

Furthermore, let us denote $\sharp_P \circ \flat_{\omega} = A$, $\sharp_{P'} \circ \flat_{\omega'} = A'$. Then, the first and last conditions of (i) yield $AX \in TN$, and this shows that the first term on the right-hand side of (3.7) is also an evaluation on N.

Moreover, let $\pi^* \flat_{\omega'} \pi_* X$ be an extension of $\pi^* \flat_{\omega'} \pi_* X$ which vanishes on E. Then $\flat_{\omega} X - \pi^* \flat_{\omega'} \pi_* X \in Ann \ TN$ and, if we apply \sharp_P and use the first and the second conditions of (i), we get

$$AX - \sharp_P \pi^* \flat_{\omega'} \pi_* X \in E \cap TN.$$

Then (3.4) allows us to conclude that $\pi_*AX = A'\pi_*X$, and formula (3.7) turns out to be exactly

$$\iota^*\{\omega,\omega\}_P = \pi^*\{\omega',\omega'\}_{P'}.$$
(3.8)

Therefore, $\{\omega, \omega\}_P = 0$ implies $\{\omega', \omega'\}_{P'} = 0$.

The most interesting case is that of a closed complementary 2-form ω since then $(P, A = \sharp_P \circ \flat_{\omega})$ is a Poisson–Nijenhuis structure [9]. In this case, if reduction exists, (Q, P', A') is again a Poisson–Nijenhuis manifold. Following is a particular reduction theorem which refers to this case.

Theorem 3.2. Let (M, P) be a Poisson manifold, and N a submanifold of M such that $E := \sharp_P Ann TN$ has a constant dimension along N, and it satisfies conditions (i)–(iii) of the beginning of Section 2, which ensure the existence of a reduction (Q, P') of (M, P) via (N, E). Let ω be a closed complementary 2-form of (M, P) such that E and TN are ω -orthogonal. Then, ω is an \mathcal{F} -foliated 2-form, and it projects to a 2-form ω' of Q which is a closed complementary 2-form of (Q, P').

Proof. First, we notice that the existence of the foliation \mathcal{F} , i.e., the fact that $E \cap TN$ is integrable along N is ensured if we ask $dim(E \cap TN) = const.$ $(E = \sharp_P Ann TN)$. (See, for instance, [7, Proposition 7.17].) Then, for our particular E, the first two conditions of (i) of Theorem 3.1 are satisfied, and the third condition of (i) of Theorem 3.1 is ensured by the ω -orthogonality of E and TN. Hence, by Theorem 3.1, Theorem 3.2 will be proven if we show that ω is \mathcal{F} -foliated. Since $\forall X \in T\mathcal{F}$ and $\forall Y \in TN$ we have $\omega(X, Y) = 0$, because of the ω -orthogonality of E and TN, ω is \mathcal{F} -foliated iff $X(\omega(Y, Z)) = 0 \ \forall X \in T\mathcal{F}$ and for all \mathcal{F} -foliated vector fields Y, Z of N. But this latter fact immediately follows from $d\omega(X, Y, Z) = 0$.

Remark 3.3.

- In Theorem 3.2, A := ♯_P b_ω provides (M, P) with a Poisson-Nijenhuis structure
 [9]. This structure is reducible in the sense of Theorem 2.1, and the reduced Poisson-Nijenhuis manifold is (Q, P', A' := ♯_{P'} b_{ω'}).
- (2) In Theorem 3.2, the foliation \mathcal{F} is given by $T\mathcal{F} = \sharp_P Ann(E + TN)$.
- (3) For symplectic manifolds, a closed complementary 2-form is equivalent to a PΩ-structure in the sense of [5] (see [9]). The cases of PΩ-reduction discussed in [5] are contained in Theorems 3.1 and 3.2.

4. Reduction under group actions

Let (M, P) be a Poisson manifold endowed with a Hamiltonian action of a connected Lie group G and an equivariant momentum map $J : M \to \mathcal{G}^*$, where \mathcal{G} is the Lie algebra of G and \mathcal{G}^* is the dual space of \mathcal{G} . Let $\gamma \in \mathcal{G}^*$ be a common regular value of the restrictions of J to the symplectic leaves of P such that $M_{\gamma} := J^{-1}(\gamma) \neq \emptyset$, and it has a clean intersection with the symplectic leaves of P and with the orbits of G in M. Then, it is known (e.g., [7]) that E = T(Orbits G) is a vector subbundle of $TM|_{M_{\gamma}}$ (the orbits of the points of M_{γ} have all the same dimension equal to the dimension of G), which intersects TM_{γ} following the tangent bundle of the foliation \mathcal{F} of M_{γ} by the connected components of the orbits of $G_{\gamma} :=$ the isotropy subgroup of $\gamma \in \mathcal{G}^*$ for the coadjoint representation of G. Moreover, if M_{γ}/\mathcal{F} is the Hausdorff manifold Q, Q has a Poisson structure P' defined by the reduction of (M, P) via (M_{γ}, E) .

The reduction procedure described above can be extended to a certain type of Poisson-Nijenhuis structures, and this is shown by the following theorem. **Theorem 4.1.** Let $(M, P, G, J, \gamma, Q, P')$ be as described above, and assume that A is a Nijenhuis structure of M which makes (M, P, A) into a Poisson–Nijenhuis manifold, and which is such that: (i) at the points of M_{γ} one has $J_* \circ A = J_*$; (ii) $\forall \xi \in \mathcal{G}$, $A\tilde{\xi} = \widetilde{C}\xi$, where tilde denotes the infinitesimal action of G on M, and C an endomorphism of \mathcal{G} ; (iii) A is G-invariant (i.e., $\forall \xi \in G$, $L_{\xi}A = 0$). Then, (P, A) reduces to a Poisson–Nijenhuis structure (P', A') of the reduced Poisson manifold (Q, P').

Proof. We obtain this result by using Theorem 2.1. The conditions $J_* \circ A = J_*$ and $A\tilde{\xi} = \widetilde{C\xi}$ yield $A(TM_{\gamma}) \subseteq TM_{\gamma}$ and $A(E) \subseteq E$ (E = T(Orbits G)), respectively. It is also known that (2.3) holds in our case [7, p. 112]. Thus, we still have to check that A sends foliated vector fields to foliated vector fields. Since $E = span{\{\tilde{\xi} | M_{\gamma} | \xi \in G\}}$, hypotheses (ii) and (iii) easily lead to the fact that (2.9) holds, and the conclusion follows.

It is also possible to use reduction under a group action in order to reduce complementary 2-forms, and we have:

Theorem 4.2. Let $(M, P, G, J, \gamma, Q, P')$ be as in Theorem 4.1, and let ω be a complementary 2-form of P on M. Assume that ω is G-invariant, and that the orbits of G are ω -orthogonal to the level sets of the momentum map J. Then, ω is projectable to a 2-form ω' of Q, which is a complementary 2-form of the reduced Poisson structure P'.

Proof. Now, we use Theorem 3.1 for $N = M_{\gamma}$ and $E = T(Orbits G) = \sharp_P Ann T M_{\gamma}$ [7, formula (7.27)]. Then, since, also, the level set M_{γ} of J is ω -orthogonal to the orbits of G, all the conditions of (i) of Theorem 3.1 are satisfied. Furthermore, the ω -orthogonality hypothesis yields $i(X)\omega|_{TM_{\gamma}} = 0 \forall X \in T\mathcal{F}$. Then, since the leaves of \mathcal{F} are the orbits of the subgroup G_{γ} of G, and $\forall \xi \in \mathcal{G}$, $L_{\xi}\omega = 0$, it becomes clear that $\iota_N^*\omega$ is \mathcal{F} -foliated. Hence, condition (ii) of Theorem 3.1 is also satisfied.

Furthermore, if we base our argument on Theorem 3.2, instead of Theorem 3.1, we obviously obtain:

Theorem 4.3. Let $(M, P, G, J, \gamma, Q, P')$ be as in Theorem 4.2, and let ω be a closed complementary 2-form of (M, P) such that the level sets of J and the orbits of G are ω -orthogonal. Then, ω projects to a 2-form ω' of Q which is a closed complementary 2-form of the reduced Poisson structure P'.

The situation of Theorem 4.3 is interesting since closed complementary 2-forms yield Poisson-Nijenhuis structures. A good example of this situation is obtained as follows. Let $\mathbf{r} \in \wedge^2 \mathcal{G}$ be a solution of the Yang-Baxter equation $[\mathbf{r}, \mathbf{r}] = 0$ (see, for instance, [7]). Then, as shown in [9] \mathbf{r} can be interpreted as a closed 2-form on the dual space \mathcal{G}^* which is complementary to the Lie-Poisson structure Π of \mathcal{G}^* . Also, since $J : (M, P) \to (\mathcal{G}^*, \Pi)$ is a Poisson map (because J is equivariant), $\omega := J^* \mathbf{r}$ is a closed complementary 2-form of (M, P). Finally, since $i(\ker J_*)\omega = 0$, the ω -orthogonality hypothesis of Theorem 4.3 is satisfied. Therefore, ω is reducible to Q, and so is the Poisson-Nijenhuis structure $(P, A = \sharp_P \circ \flat_\omega)$.

References

- R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd. Ed. (Benjamin/Cummings, Reading, MA, 1978).
- [2] I.M. Gel'fand and I.Ya. Dorfman, The Schouten bracket and Hamiltonian operators, Funkt. Anal. Prilozhen. 14(3) (1980) 71-74.
- [3] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré, série A 53 (1990) 35-81.
- [4] J.L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: É. Cartan et les mathématiques d'aujourd'hui, Soc. Math. de France, Astérisque, hors série, 1985, pp.257-271.
- [5] F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson–Nijenhuis manifolds, Quaderno S. Univ. of Milan 19 (1984).
- [6] J.E. Marsden and T. Rațiu, Reduction of Poisson manifolds, Lett. Math. Phys. 11 (1986) 161-169.
- [7] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Math. Series, Vol. 118 (Birkhäuser, Basel, 1994).
- [8] I. Vaisman, The Poisson-Nijenhuis manifolds revisited. Rendiconti Sem. Mat. Torino 52 (1994) 377-394.
- [9] I. Vaisman, Complementary 2-forms of Poisson structures. Compositio Math. (1995) to appear.
- [10] A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988) 705-727.